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Kihara's first approximation for isotopic thermal diffusion in gases, which 
is a simplification of the Chapman-Enskog approximation, is derived in a 
simple and intuitive manner; the derivation elucidates the physical meaning 
of the approximation. The second approximation in this scheme is also 
given; it indicates the high accuracy of the first approximation. 
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1. I N T R O D U C T I O N  

In  1949 the  p re sen t  a u t h o r  (1~ sugges ted  a s impl i f ica t ion  o f  the  w e l l - k n o w n  

express ions  fo r  the  t r a n s p o r t  coeff icients  o f  gases due  to  C h a p m a n  a n d  

Enskog .  Th is  s cheme  is ca l led  the  K i h a r a  a p p r o x i m a t i o n ,  in con t r a s t  w i th  

t he  o r ig ina l  C h a p m a n - E n s k o g  a p p r o x i m a t i o n ;  express ions  o b t a i n e d  by  this  

s cheme  are  wide ly  used  in the  l i te ra ture .  (2-1~ 
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In either of these approximations, the transport coefficients are given in 
terms of the effective cross sections ~2")(r) defined by 

( /cT ]1,2(oo 8f O)d,~dg* (1) f~(~ = \ ~ - ~ ]  Jo exp(-g*2) g*2'+ (1 - cos t 

g* =- (m*/2kT)i/2g, I = 1, 2,...; r = 1, 1 + 1 .... 

Here g is the relative velocity; 0 is the angle of deflection in the orbit of relative 
motion; d~ is the differential collision cross section; m* is the reduced mass; 
T is the absolute temperature; and k is the Boltzmann constant. The purpose 
of the Kihara simplification was to obtain expressions which contain only 
f2">(r) with smaller l and r while nevertheless attaining sufficient accuracy. 

From (1) we find the identity 

d In f~(~'(r)f~(')(r + 1) ( ~) 
d In T = f~(Z)(r) r + (2) 

Both sides vanish identically for the Maxwellian molecular model and take 
on small magnitudes in general. By virtue of this characteristic, the coefficient 
of viscosity ~7 of a pure gas and the coefficient of thermal conductivity • of a 
pure monatonic gas are obtained (z) in the forms 

~7 = 8f2(2~(2 ) 1 + k~(z)(2) (3) 

K = 2 16mf2~2~(2) 1 + t, g2(2)(2 ) (4) 

where m is the molecular mass. These expressions are substantially simpler 
and nevertheless no less accurate ~ )  than those in the second Chapman- 
Enskog approximation given in terms of ~2(2)(2), f~(2)(3), and f2(2)(4). Similarly, 
the second approximation to the coefficient of self-diffusion D is of the form 

D = 8nm~2(~ ) 1 + 10 + 2a(2'(2)/~2(~'(1) k ~  (5) 

n being the number density of the molecules. The Cbapman-Enskog approxi- 
mation corresponding to (5) contains ~(x)(3), moreover. 

Now let us consider a binary gas mixture in which both the temperature 
T and the mole fractions nA/(na + riB) and nB/(nA + n~) are inhomogeneous. 
Here nA and nB denote the number densities of the species A and B, respec- 
tively. The flow velocity of the species A relative to that of B is related to the 
gradient of the mole fraction and the temperature gradient by 

VA--V, (nAnAnB + n")~[ D V  nA n________~a + +  n,  Dr V In T] (6) 
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Here D is the coefficient of diffusion and Dr is the coefficient of thermal 
diffusion; the dimensionless quantity 

kr ==- Dr/D (7) 

is called the thermal diffusion ratio. Theoretical expressions for these transport 
coefficients contain three kinds of effective cross sections, f~ ( r ) ,  ~(Z~(r), and 
~)~)(r), between AA, AB, and BB, respectively. 

For isotopic mixtures, the intermolecular force is similar and hence 

(8) 

where mA and m~ are the molecular masses and m* -- mAmr~/(mA + mB). 
We let mA > mB. 

For heavy isotopes, which we consider throughout, the relative mass 
difference ( m A -  mB)/(mA + mB) is small, and kr is proportional to this 
quantity, 

nAF/B mA - -  m B  

kr = (hA + n~) 2 mA + mBkr* (9) 

The quantity kr* is called "reduced thermal diffusion ratio." 
The first approximation in our scheme yields (1~ 

kr* = 15 2f2<1~(2) - 5f2~1~(1) 
8 f2~2~(2) 

(10) 

This was first derived from the Chapman-Enskog approximation 

1512~(2)  - 5~(1)115~2~)(1) + f2~2~(2)] 
kr* = f2<2~(2)[55f~<l>(1 ) _ 20.Q<1)(2) + 4f2~1~(3 ) + 8.Q<2~(2)] 

(ll) 

by disregarding the second and higher powers of the right-hand terms of (2). 
The difference between (10) and (l l)  is notable: it amounts to 5~o for the 
rigid sphere model of molecules. After laborious higher order calculations, 
Mason (5~ found that (10) is definitely more accurate than (11). 

A purpose of the present paper is to derive the expression (10) in a 
simple and intuitive manner, and thereby to elucidate its physical meaning. 
Another purpose is to give a second approximation to kr* in the present 
scheme, which will indicate the high accuracy of the first approximation (10). 

We shall obtain an expression for kr* by considering the case in which 
the mole fractions in (6) are uniform: 

m A - -  m B 
VA -- VB Dkr* V In T (12) 

mA + mB 

Here D is the coefficient of self-diffusion. 
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. A SIMPLE DERIVATION OF THE FIRST A P P R O X I M A T I O N  

If  all the molecules  in a gas were of  the species A,  the velocity distribution 
fA(CA) would be of the form 

fA~ 1 + a l (  5 macAZ][rnA~l/z2--kT]l,2kT] c a ' V l n  T] 

in which fA~ is the Maxwellian distribution. Similarly, if all were B, 

f~~ [ 1 +  al( 5 mBc~2~/2kT/[2~)mB \II2e~.V In T] 

It is known that, in the first approximation, 

15 [kT~ 1/2 1 (13) 
al = ~ \m*l f2(2)(2) 

Here n is the total number density of the molecules, and the relationships (8) 
have been used. 

In a homogeneous mixture of isotopes A and B, the species A flows with 
a velocity vA and the species B with a velocity of VB. Thus f~~ should be 
replaced byf~~ -- VA), i.e., the velocity distribution should be of the form 

[ mA (5 mACA2](mA] x/2 ] 
fA(eA) =f~~ 1 + ~--~eA'VA + a~ ~ ~ ]~-f'k'T] eA.VlnT  (14) 

This is our first approximation. A similar expression holds for fB(eB). 
The relative flow velocity vA -- VB is determined from the condition that 

the momentum transfer between the two species should vanish on the 
average: 

f f f fA(cA)f~(cB)(mseB -- mBcs')]CB -- ca[ da dca des = O (15) 

Here CA and eB are the velocities before a collision and cA' and eB' are those 
after the collision. 

Equation (15) can be transformed into 

f f f f~(e~)f~(e~)(g - g')g d~ dg dG = O 

where the center-of-mass velocity G and the relative velocities g _-- eB - eA 
and g' - e~' -- eA ~ have been introduced. On performing the integration, we 
obtain 

1m*\112 
- 

- 3 mAmA ~-- m~ a~[2~(~)(2) -- 5~(~)(1)] V In T (16) 
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From (12), (13), (16), and the first approximation to (5), we finally 
obtain the expression (10). 

3. SECOND A P P R O X I M A T I O N  

The second approximation to the velocity distribution fA(CA) in our 
present scheme takes the form 

( [  k ~(1)[mAcA2~J mA 
fa(e^) =f~~ 1 + 1 + ~'1~, ~ 2--2-k-TJJ ~--~ea.v. 

r.  ~(1)(macAZ~ .. ~(2,[maca2~ ] [ ma "~112 ) 
+ L "~" K ~ - - I  + " ~  KY~- r  ~,Yk--~! ~ , . v  In 7" 

(17) 

in which S(~(x) denote S~(x) ,  the Sonine polynomials of order 3/2: 

S(1)(x) = { - x, S(2)(x) = (35/8) - 7x + lx2 

An expression similar to (17) applies to the function fB(%) with the same 
al ,  a2, and bl. Our second approximation to al and the first approximation to 
a2 are the following: 

a2 = [al]~ 4 [ k ~  ; )  (19) 
t)(2)(3) 

where [al]x is the first approximation (13) used in Section 2. 
The coefficient bl is to be determined on the basis of the Boltzmann 

equation 
e^.V/a(%) = (Sf./St)oou 

in which the right-hand side indicates the rate of change due to molecular 
collisions. For fa (e~)on the left, we can substitute the Maxwellian f~~ 
obtaining 

5 r(O)re ,[maCA 2 ~)ea.V in [Sfa~ , a ,  a,~, ~ r = (20) 
\ ~t/ooH 

By multiplying cA on both sides and integrating with respect to cA, or by 
making use of (15) directly, we obtain 

1m* \1~2 
16~-7)  (va - vD{4t)(~)(1) - bl[2a(~)(2) - 5~(~)(1)1} 

_ m .  - m.  {24al[2t)(1)(2 ) _ 5t1(1)(1)] 
m .  ~- m B 

+ 5a2[-4f2(~)(3) + 28f2(1)(2) -- 35f2(x)(1)]} V In T 
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By multiplying by (5/2 - mAcA2/2kT)eA on both hand sides of (20) and 
integrating, we have 

/ m* \112 
- v.){412f (l'(2) - 50'*'(1)1 

- bl[4f~(*)(3) - 20f~m(2) + 55f2m(1) + 8f~(2)(2)]} 

_ rna - m B  {3a114~2(1)(3) _ 20f2m(2) + 15f~(1)(1)] 
m a q-  m B 

- 23a212~2(1)(2) - 5~m(1)]} V In T 

Here use has been made of integral formulas given in Refs. 9 and 10. 
On eliminating bl in these two equations and making use of (5), (12), 

(18), and (19), we finally obtain 

kr* = 15 2f~a)(2) - 5f2(~)(1)(1 + 8o + 81 + 82 + 8a) (21) 
8 ~(2)(2) 

where 

4~(1)(3) - 20f~(1)(2) + 15f2(1)(1) 
30 = -4f2(~)(3) _ 20f2m(2) + 55f2m(1) + 8f~(2i(2) 

23 [ 

3 .  = 2 /a(2,(3) 
%1 

) -4f~m(3) + 28k2(~)(2) - 35f2m(1) 

~) 2f~m(2) - 5f2(1)(1 ) 
5- 

Here terms containing higher powers of temperature derivatives of effective 
cross sections have been disregarded, e.g., 4f2m(3) - 20f~a)(2) + 55~2m(1) + 
8f2(2)(2) has been replaced by 40f2m(1) + 8f2(2)(2) in 32. 

For the rigid sphere model of molecules the correction terms are 

3o = -0.051, 31 = 40.020, 32 = 40.013, 33 = 40.024 

the sum 3 o + 31 + 32 + 3a = 0.006 almost vanishing. In general, 8o + 
31 + 32 + 3a is negligible; this fact indicates that our first approximation (10) 
is sufficiently accurate. 

4.  C O N C L U D I N G  R E M A R K S  

The Chapman-Enskog approximation (11) corresponds to 

kr* = 15 2~2m(2) - 5f~m(1)(1 + 80) 
8 ~(2)(2) 
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This expression follows f rom a form o f  velocity distribution similar to (17) 
in which the term a2S(2~(mAcA2/2kT) is omitted. Since this term is as effective 
as the term blS(l~(mAcA2/2kT), and, furthermore,  since these two contribu- 
tions almost  cancel each other, the expression (11) is not  as accurate as the 
simple expression (10). 

The second approximat ion (21) is considerably simpler than Mason ' s  (5~ 
"Kihara - type  second approximat ion,"  which contains f2(3~(3). This approxi- 
mat ion was obtained on the basis o f  a velocity distribution which is similar to 
(17) but  with 1 + blS (1) + b2S (2~ instead o f  1 + blS  (~. Mason ' s  expression 
is 1.5~o larger than (21) in the case o f  a rigid sphere model  o f  molecules. 
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